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What’s In A Tag Store Entry?

• Valid bit

• Tag

• Replacement policy bits

• Dirty bit?

– Write back vs. write through caches
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Handling Writes (I)
◼ When do we write the modified data in a cache to the next 

level?
• Write through: At the time the write happens
• Write back: When the block is evicted

– Write-back
+ Can combine multiple writes to the same block before eviction

– Potentially saves bandwidth between cache levels + saves energy
-- Need a bit in the tag store indicating the block is “dirty/modified”

– Write-through
+ Simpler
+ All levels are up to date. Consistency: Simpler cache coherence because 

no need to check close-to-processor caches’ tag stores for presence
-- More bandwidth intensive; no combining of writes
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Handling Writes (II)
• Do we allocate a cache block on a write miss?

– Allocate on write miss: Yes
– No-allocate on write miss: No

• Allocate on write miss
+ Can combine writes instead of writing each of them 

individually to next level
+ Simpler because write misses can be treated the same way as 

read misses
-- Requires (?) transfer of the whole cache block

• No-allocate
+ Conserves cache space if locality of writes is low (potentially 

better cache hit rate)
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Handling Writes (III)
• What if the processor writes to an entire block 

over a small amount of time?

• Is there any need to bring the block into the 
cache from memory in the first place?

• Ditto for a portion of the block, i.e., subblock

– E.g., 4 bytes out of 64 bytes
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Cache Performance



Cache Parameters vs. Miss/Hit Rate

• Cache size

• Block size

• Associativity

• Replacement policy

• Insertion/Placement policy
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Cache Size
• Cache size: total data (not including tag) capacity

– bigger can exploit temporal locality better
– not ALWAYS better

• Too large a cache adversely affects hit and miss latency
– smaller is faster => bigger is slower
– access time may degrade critical path

• Too small a cache
– doesn’t exploit temporal locality well
– useful data replaced often

• Working set: the whole set of data                                                    
the executing application references 
– Within a time interval 
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Block Size
• Block size is the data that is associated with an address tag 

– not necessarily the unit of transfer between hierarchies
• Sub-blocking: A block divided into multiple pieces (each with V bit)

– Can improve “write” performance

• Too small blocks
– don’t exploit spatial locality well
– have larger tag overhead

• Too large blocks
– too few total # of blocks → less

temporal locality exploitation

– waste of cache space and 
bandwidth/energy:

if spatial locality is not high
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Large Blocks: Critical-Word and Subblocking

• Large cache blocks can take a long time to fill into 
the cache

– fill cache line critical word first 

– restart cache access before complete fill

• Large cache blocks can waste bus bandwidth 

– divide a block into subblocks

– associate separate valid bits for each subblock

– When is this useful?
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Associativity
• How many blocks can be present in the same index (i.e., 

set)?
• Larger associativity

– lower miss rate (reduced conflicts)
– higher hit latency and area cost (plus diminishing returns)

• Smaller associativity
– lower cost
– lower hit latency

• Especially important for L1 caches

• Is power of 2 associativity required?
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Classification of Cache Misses
• Compulsory miss 

– first reference to an address (block) always results in a miss

– subsequent references should hit unless the cache block is 
displaced for the reasons below

• Capacity miss 
– cache is too small to hold everything needed

– defined as the misses that would occur even in a fully-
associative cache (with optimal replacement) of the same 
capacity 

• Conflict miss 
– defined as any miss that is neither a compulsory nor a 

capacity miss
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How to Reduce Each Miss Type
• Compulsory

– Caching cannot help
– Prefetching can

• Conflict
– More associativity
– Other ways to get more associativity without making the 

cache associative
• Victim cache
• Better, randomized indexing
• Software hints?

• Capacity
– Utilize cache space better: keep blocks that will be referenced
– Software management: divide working set such that each 
“phase” fits in cache

13



How to Improve Cache Performance
• Three fundamental goals

• Reducing miss rate
– Caveat: reducing miss rate can reduce performance if more 

costly-to-refetch blocks are evicted

• Reducing miss latency or miss cost

• Reducing hit latency or hit cost

• The above three together affect performance 
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Improving Basic Cache Performance
• Reducing miss rate

– More associativity
– Alternatives/enhancements to associativity 

• Victim caches, hashing, pseudo-associativity, skewed associativity

– Better replacement/insertion policies
– Software approaches

• Reducing miss latency/cost
– Multi-level caches
– Critical word first
– Subblocking/sectoring
– Better replacement/insertion policies
– Non-blocking caches (multiple cache misses in parallel)
– Multiple accesses per cycle
– Software approaches
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Cheap Ways of Reducing Conflict 
Misses
• Instead of building highly-associative caches:

• Victim Caches

• Hashed/randomized Index Functions

• Pseudo Associativity

• Skewed Associative Caches

• … 
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Victim Cache: Reducing Conflict Misses

• Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a Small Fully-
Associative Cache and Prefetch Buffers,” ISCA 1990.

• Idea: Use a small fully-associative buffer (victim 
cache) to store recently evicted blocks 

+ Can avoid ping ponging of cache blocks mapped to the same set (if two cache blocks 
continuously accessed in nearby time conflict with each other)

-- Increases miss latency if accessed serially with L2; adds complexity
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Hashing and Pseudo-Associativity
• Hashing: Use better “randomizing” index functions  

+ can reduce conflict misses
• by distributing the accessed memory blocks more evenly to sets
• Example of conflicting accesses: strided access pattern where stride 

value equals number of sets in cache

-- More complex to implement: can lengthen critical path

• Pseudo-associativity (Poor Man’s associative cache)
– Serial lookup: On a miss, use a different index function and 

access cache again
– Given a direct-mapped array with K cache blocks

• Implement K/N sets
• Given address Addr, sequentially look up: {0,Addr[lg(K/N)-1: 0]}, 

{1,Addr[lg(K/N)-1: 0]}, … , {N-1,Addr[lg(K/N)-1: 0]} 

+ Less complex than N-way; -- Longer cache hit/miss latency 
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Skewed Associative Caches

• Idea: Reduce conflict misses by using different 
index functions for each cache way

• Seznec, “A Case for Two-Way Skewed-Associative 
Caches,” ISCA 1993.
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Skewed Associative Caches (I)
• Basic 2-way associative cache structure
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Skewed Associative Caches (II)
• Skewed associative caches

– Each bank has a different index function
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Skewed Associative Caches (III)

• Idea: Reduce conflict misses by using different index 
functions for each cache way

• Benefit: indices are more randomized (memory 
blocks are better distributed across sets)
– Less likely two blocks have same index (esp. with strided

access)
• Reduced conflict misses

• Cost: additional latency of hash function
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Software Approaches for Higher Hit 
Rate
• Restructuring data access patterns

• Restructuring data layout

• Loop interchange

• Data structure separation/merging

• Blocking

• …
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Restructuring Data Access Patterns (I)

• Idea: Restructure data layout or data access patterns
• Example: If column-major

– x[i+1,j] follows x[i,j] in memory
– x[i,j+1] is far away from x[i,j]

• This is called loop interchange
• Other optimizations can also increase hit rate

– Loop fusion, array merging, …

• What if multiple arrays? Unknown array size at compile time?
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Poor code

for i = 1, rows

for j = 1, columns

sum = sum + x[i,j]

Better code

for j = 1, columns

for i = 1, rows

sum = sum + x[i,j]



Restructuring Data Access Patterns (II)

• Blocking 
– Divide loops operating on arrays into computation 

chunks so that each chunk can hold its data in the cache
– Avoids cache conflicts between different chunks of 

computation
– Essentially: Divide the working set so that each piece fits 

in the cache

• But, there are still self-conflicts in a block
1. there can be conflicts among different arrays
2. array sizes may be unknown at compile/programming 

time

25



Restructuring Data Layout (I)
• Pointer based traversal 

(e.g., of a linked list)

• Assume a huge linked 
list (1B nodes) and 
unique keys

• Why does the code on 
the left have poor 
cache hit rate?
– “Other fields” occupy 

most of the cache line 
even though rarely 
accessed!
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struct Node {

struct Node* next;

int key;

char [256] name;

char [256] school;

}

while (node) {

if (node→key == input-key) {

// access other fields of node

}

node = node→next;

}



Restructuring Data Layout (II)
• Idea: separate frequently-

used fields of a data 
structure and pack them 
into a separate data 
structure

• Who should do this?
– Programmer

– Compiler 
• Profiling vs. dynamic

– Hardware?

– Who can determine what 
is frequently used?
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struct Node {

struct Node* next;

int key;

struct Node-data* node-data;

}

struct Node-data {

char [256] name;

char [256] school;

}

while (node) {

if (node→key == input-key) {

// access node→node-data

}

node = node→next;

}



Improving Basic Cache Performance
• Reducing miss rate

– More associativity
– Alternatives/enhancements to associativity 

• Victim caches, hashing, pseudo-associativity, skewed associativity

– Better replacement/insertion policies
– Software approaches

• Reducing miss latency/cost
– Multi-level caches
– Critical word first
– Subblocking/sectoring
– Better replacement/insertion policies
– Non-blocking caches (multiple cache misses in parallel)
– Multiple accesses per cycle
– Software approaches
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Miss Latency/Cost
• What is miss latency or miss cost affected by?

– Where does the miss get serviced from?
• Local vs. remote memory

• What level of cache in the hierarchy?

• Row hit versus row miss in DRAM

• Queueing delays in the memory controller and the 
interconnect

• …

– How much does the miss stall the processor?
• Is it overlapped with other latencies?

• Is the data immediately needed?

• …
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Memory Level Parallelism (MLP) 

❑Memory Level Parallelism (MLP) means generating and 
servicing multiple memory accesses in parallel [Glew’98]

❑Several techniques to improve MLP (e.g., out-of-order execution)

❑MLP varies. Some misses are isolated and some parallel 

How does this affect cache replacement?

time

A
B

C

isolated miss parallel miss



Traditional Cache Replacement Policies

❑Traditional cache replacement policies try to reduce miss 
count

❑ Implicit assumption: Reducing miss count reduces 
memory-related stall time 

❑Misses with varying cost/MLP breaks this assumption!

❑Eliminating an isolated miss helps performance more than 
eliminating a parallel miss

❑Eliminating a higher-latency miss could help performance 
more than eliminating a lower-latency miss
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Misses to blocks P1, P2, P3, P4 can be parallel
Misses to blocks S1, S2, and S3 are isolated

Two replacement algorithms:
1. Minimizes miss count (Belady’s OPT)
2. Reduces isolated miss (MLP-Aware)

For a fully associative cache containing 4 blocks

S1P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

An Example



Fewest Misses = Best Performance

P3 P2 P1 P4 

H  H  H  H M          H  H  H MHit/Miss

Misses=4 
Stalls=4

S1P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

Time stall

Belady’s OPT replacement

M          M          

MLP-Aware replacement

Hit/Miss

P3 P2 S1 P4 P3 P2 P1 P4 P3 P2 S2P4 P3 P2 S3P4 S1 S2 S3P1 P3 P2 S3P4 S1 S2 S3P4 

H           H           H

S1 S2 S3P4 

H  M  M  M H  M  M  M

Time stall Misses=6
Stalls=2

Saved 
cycles

Cache



MLP-Aware Cache Replacement
• How do we incorporate MLP into replacement 

decisions?

• Qureshi et al., “A Case for MLP-Aware Cache 
Replacement,” ISCA 2006.
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Review #4

• RowClone: Fast and Energy-Efficient 

In-DRAM Bulk Data Copy and 
Initialization

Vivek Seshadri et al., MICRO 2013
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Why Is Memory So Important? 

(Especially Today)



The Performance Perspective
• “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996)

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.



The Energy Perspective
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Dally, HiPEAC 2015



The Energy Perspective
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Dally, HiPEAC 2015

A memory access consumes ~1000X 
the energy of a complex addition 



The Reliability Perspective
• Data from all of Facebook’s servers worldwide
• Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN’15.
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The Security Perspective
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Why Is DRAM So Slow? 



Motivation (by Vivek Seshadri)

Conversation with a friend from Stanford

Why is DRAM so slow?!

Really?

50 nanoseconds to serve 
one request? Is that a 
fundamental limit to 
DRAM’s access latency?

Him Vivek
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Understanding DRAM

What is in here?
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DRAM

Problems related to today’s 
DRAM design

Solutions proposed by our research



Outline

1. What is DRAM?

2. DRAM Internal Organization

3. Problems and Solutions
– Latency (Tiered-Latency DRAM, HPCA 2013, 

Adaptive-Latency DRAM, HPCA 2015)

– Parallelism (Subarray-level Parallelism, ISCA 2012)
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What is DRAM?

DRAM – Dynamic Random Access Memory

3455434

Array of Values

43543

98734

0

847

42

873909

1729

WRITE address, value

READ address

Accessing any location takes 
the same amount of time

Data needs to be constantly 
refreshed
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DRAM in Today’s Systems
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Why DRAM? Why not some other memory?



Von Neumann Model

Processor Memory

Program Data

T1 = Read Data[1]

T2 = Read Data[2]

T3 = T1 + T2

Write Data[3], T3

3

4

8

2

T1 = Read Data[1]

4
4 instruction accesses +
3 data accesses

Memory performance is important
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Factors that Affect Choice of Memory

1. Speed

– Should be reasonably fast compared to processor

2. Capacity

– Should be large enough to fit programs and data

3. Cost

– Should be cheap
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Why DRAM?

Access Latency

C
o

st
Flip-flops

SRAM

DRAM

Flash
Disk

Higher 
Cost

Higher access 
latency

Favorable point in the 
trade-off spectrum
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Is DRAM Fast Enough?

Processor Commodity DRAM

Request

3 GHz, 2 Instructions / cycle

300 Instructions

300 Instructions

300 Instructions

300 Instructions

Independent programs

Request

Request

Request

Served in parallel?

Core Core

Core Core
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Latency

Parallelism
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Outline

1. What is DRAM?

2. DRAM Internal Organization

3. Problems and Solutions
– Latency (Tiered-Latency DRAM, HPCA 2013, 

Adaptive-Latency DRAM, HPCA 2015)

– Parallelism (Subarray-level Parallelism, ISCA 2012)
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DRAM Cell Array: Mat

peripheral logic

cell

mat
mat
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Memory Element (Cell)

0 1

Component that can be in at least two states

Can be electrical, magnetic, mechanical, etc.

DRAM  →  Capacitor
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Capacitor – Bucket of Electric Charge

Charge

“Charged” “Discharged”

0 0

Vmax

0Voltage level 
indicator. Not part 
of the actual circuit
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DRAM Chip

Contains billions of 
capacitors (also called cells)

0

?
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DRAM Chip



Divide and Conquer

DRAM Bank

?
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1. Weak

2. Reading destroys state

Challenges



Sense-Amplifier

Vmax

0

Vx

Vy

Vx > Vy

Vx

Vy

Vx+δ

Vx+δ

Vy-δ

Amplify the 
difference Stable state
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Outline

1. What is DRAM?

2. DRAM Internal Organization

– DRAM Cell

– DRAM Array

– DRAM Bank

3. Problems and Solutions
– Latency (Tiered-Latency DRAM, HPCA 2013)

– Parallelism (Subarray-level Parallelism, ISCA 2012)
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DRAM Cell Read Operation

Vmax/2

Vmax/2

0

Vmax/2 + δ

0

VmaxVmaxVmax/2 + δ

DRAM
Cell

Sense-Amplifier

Cell loses 
charge

Amplify the 
differenceRestore 

Cell Data
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DRAM Cell Read Operation

0

DRAM
Cell

Sense-Amplifier

Control Signal

DRAM
Cell

Address
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Outline

1. What is DRAM?

2. DRAM Internal Organization
– DRAM Cell

– DRAM Array

– DRAM Bank

3. Problems and Solutions
– Latency (Tiered-Latency DRAM, HPCA 2013; 

Adaptive-Latency DRAM, HPCA 2015)

– Parallelism (Subarray-level Parallelism, ISCA 2012)
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Problem

Sense-Amplifier

Control Signal

DRAM
Cell

Address

Much larger than a cell
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Cost Amortization
Bitline

Wordline
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DRAM Array Operation
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Outline

1. What is DRAM?

2. DRAM Internal Organization
– DRAM Cell

– DRAM Array

– DRAM Bank

3. Problems and Solutions
– Latency (Tiered-Latency DRAM, HPCA 2013

Adaptive-Latency DRAM, HPCA 2015)

– Parallelism (Subarray-level Parallelism, ISCA 2012)
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DRAM Bank
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How to build a DRAM bank 
from a DRAM array?



DRAM Bank: Single DRAM Array?
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DRAM Bank: Collection of Arrays
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DRAM Operation: Summary
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DRAM Chip Hierarchy
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Outline

1. What is DRAM?

2. DRAM Internal Organization

3. Problems and Solutions
– Latency (Tiered-Latency DRAM, HPCA 2013; 

Adaptive-Latency DRAM, HPCA 2015)

– Parallelism (Subarray-level Parallelism, ISCA 2012)
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Review #4

• RowClone: Fast and Energy-Efficient 

In-DRAM Bulk Data Copy and 
Initialization

Vivek Seshadri et al., MICRO 2013
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