
CSC 2224: Parallel Computer
Architecture and Programming

Caches and Main Memory

Prof. Gennady Pekhimenko

University of Toronto

Fall 2021

The content of this lecture is adapted from the lectures of
Onur Mutlu @ CMU and ETH

What’s In A Tag Store Entry?

• Valid bit

• Tag

• Replacement policy bits

• Dirty bit?

– Write back vs. write through caches

2

Handling Writes (I)
◼ When do we write the modified data in a cache to the next

level?
• Write through: At the time the write happens
• Write back: When the block is evicted

– Write-back
+ Can combine multiple writes to the same block before eviction

– Potentially saves bandwidth between cache levels + saves energy
-- Need a bit in the tag store indicating the block is “dirty/modified”

– Write-through
+ Simpler
+ All levels are up to date. Consistency: Simpler cache coherence because

no need to check close-to-processor caches’ tag stores for presence
-- More bandwidth intensive; no combining of writes

3

Handling Writes (II)
• Do we allocate a cache block on a write miss?

– Allocate on write miss: Yes
– No-allocate on write miss: No

• Allocate on write miss
+ Can combine writes instead of writing each of them

individually to next level
+ Simpler because write misses can be treated the same way as

read misses
-- Requires (?) transfer of the whole cache block

• No-allocate
+ Conserves cache space if locality of writes is low (potentially

better cache hit rate)

4

Handling Writes (III)
• What if the processor writes to an entire block

over a small amount of time?

• Is there any need to bring the block into the
cache from memory in the first place?

• Ditto for a portion of the block, i.e., subblock

– E.g., 4 bytes out of 64 bytes

5

Cache Performance

Cache Parameters vs. Miss/Hit Rate

• Cache size

• Block size

• Associativity

• Replacement policy

• Insertion/Placement policy

7

Cache Size
• Cache size: total data (not including tag) capacity

– bigger can exploit temporal locality better
– not ALWAYS better

• Too large a cache adversely affects hit and miss latency
– smaller is faster => bigger is slower
– access time may degrade critical path

• Too small a cache
– doesn’t exploit temporal locality well
– useful data replaced often

• Working set: the whole set of data
the executing application references
– Within a time interval

8

hit rate

cache size

“working set”
size

Block Size
• Block size is the data that is associated with an address tag

– not necessarily the unit of transfer between hierarchies
• Sub-blocking: A block divided into multiple pieces (each with V bit)

– Can improve “write” performance

• Too small blocks
– don’t exploit spatial locality well
– have larger tag overhead

• Too large blocks
– too few total # of blocks → less

temporal locality exploitation

– waste of cache space and
bandwidth/energy:

if spatial locality is not high

9

hit rate

block

size

Large Blocks: Critical-Word and Subblocking

• Large cache blocks can take a long time to fill into
the cache

– fill cache line critical word first

– restart cache access before complete fill

• Large cache blocks can waste bus bandwidth

– divide a block into subblocks

– associate separate valid bits for each subblock

– When is this useful?

10

tagsubblockvsubblockv subblockvd d d

Associativity
• How many blocks can be present in the same index (i.e.,

set)?
• Larger associativity

– lower miss rate (reduced conflicts)
– higher hit latency and area cost (plus diminishing returns)

• Smaller associativity
– lower cost
– lower hit latency

• Especially important for L1 caches

• Is power of 2 associativity required?

11

associativity

hit rate

Classification of Cache Misses
• Compulsory miss

– first reference to an address (block) always results in a miss

– subsequent references should hit unless the cache block is
displaced for the reasons below

• Capacity miss
– cache is too small to hold everything needed

– defined as the misses that would occur even in a fully-
associative cache (with optimal replacement) of the same
capacity

• Conflict miss
– defined as any miss that is neither a compulsory nor a

capacity miss

12

How to Reduce Each Miss Type
• Compulsory

– Caching cannot help
– Prefetching can

• Conflict
– More associativity
– Other ways to get more associativity without making the

cache associative
• Victim cache
• Better, randomized indexing
• Software hints?

• Capacity
– Utilize cache space better: keep blocks that will be referenced
– Software management: divide working set such that each
“phase” fits in cache

13

How to Improve Cache Performance
• Three fundamental goals

• Reducing miss rate
– Caveat: reducing miss rate can reduce performance if more

costly-to-refetch blocks are evicted

• Reducing miss latency or miss cost

• Reducing hit latency or hit cost

• The above three together affect performance

14

Improving Basic Cache Performance
• Reducing miss rate

– More associativity
– Alternatives/enhancements to associativity

• Victim caches, hashing, pseudo-associativity, skewed associativity

– Better replacement/insertion policies
– Software approaches

• Reducing miss latency/cost
– Multi-level caches
– Critical word first
– Subblocking/sectoring
– Better replacement/insertion policies
– Non-blocking caches (multiple cache misses in parallel)
– Multiple accesses per cycle
– Software approaches

15

Cheap Ways of Reducing Conflict
Misses
• Instead of building highly-associative caches:

• Victim Caches

• Hashed/randomized Index Functions

• Pseudo Associativity

• Skewed Associative Caches

• …

16

Victim Cache: Reducing Conflict Misses

• Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a Small Fully-
Associative Cache and Prefetch Buffers,” ISCA 1990.

• Idea: Use a small fully-associative buffer (victim
cache) to store recently evicted blocks

+ Can avoid ping ponging of cache blocks mapped to the same set (if two cache blocks
continuously accessed in nearby time conflict with each other)

-- Increases miss latency if accessed serially with L2; adds complexity

17

Direct

Mapped

Cache

Next Level

Cache

Victim

cache

Hashing and Pseudo-Associativity
• Hashing: Use better “randomizing” index functions

+ can reduce conflict misses
• by distributing the accessed memory blocks more evenly to sets
• Example of conflicting accesses: strided access pattern where stride

value equals number of sets in cache

-- More complex to implement: can lengthen critical path

• Pseudo-associativity (Poor Man’s associative cache)
– Serial lookup: On a miss, use a different index function and

access cache again
– Given a direct-mapped array with K cache blocks

• Implement K/N sets
• Given address Addr, sequentially look up: {0,Addr[lg(K/N)-1: 0]},

{1,Addr[lg(K/N)-1: 0]}, … , {N-1,Addr[lg(K/N)-1: 0]}

+ Less complex than N-way; -- Longer cache hit/miss latency

18

Skewed Associative Caches

• Idea: Reduce conflict misses by using different
index functions for each cache way

• Seznec, “A Case for Two-Way Skewed-Associative
Caches,” ISCA 1993.

19

Skewed Associative Caches (I)
• Basic 2-way associative cache structure

20

Way 0 Way 1

Tag Index Byte in Block

Same index function

for each way

=? =?

Skewed Associative Caches (II)
• Skewed associative caches

– Each bank has a different index function

21

Way 0 Way 1

tag index byte in block

f0

same index
same set

same index
redistributed to

different sets

=? =?

Skewed Associative Caches (III)

• Idea: Reduce conflict misses by using different index
functions for each cache way

• Benefit: indices are more randomized (memory
blocks are better distributed across sets)
– Less likely two blocks have same index (esp. with strided

access)
• Reduced conflict misses

• Cost: additional latency of hash function

22

Software Approaches for Higher Hit
Rate
• Restructuring data access patterns

• Restructuring data layout

• Loop interchange

• Data structure separation/merging

• Blocking

• …

23

Restructuring Data Access Patterns (I)

• Idea: Restructure data layout or data access patterns
• Example: If column-major

– x[i+1,j] follows x[i,j] in memory
– x[i,j+1] is far away from x[i,j]

• This is called loop interchange
• Other optimizations can also increase hit rate

– Loop fusion, array merging, …

• What if multiple arrays? Unknown array size at compile time?

24

Poor code

for i = 1, rows

for j = 1, columns

sum = sum + x[i,j]

Better code

for j = 1, columns

for i = 1, rows

sum = sum + x[i,j]

Restructuring Data Access Patterns (II)

• Blocking
– Divide loops operating on arrays into computation

chunks so that each chunk can hold its data in the cache
– Avoids cache conflicts between different chunks of

computation
– Essentially: Divide the working set so that each piece fits

in the cache

• But, there are still self-conflicts in a block
1. there can be conflicts among different arrays
2. array sizes may be unknown at compile/programming

time

25

Restructuring Data Layout (I)
• Pointer based traversal

(e.g., of a linked list)

• Assume a huge linked
list (1B nodes) and
unique keys

• Why does the code on
the left have poor
cache hit rate?
– “Other fields” occupy

most of the cache line
even though rarely
accessed!

26

struct Node {

struct Node* next;

int key;

char [256] name;

char [256] school;

}

while (node) {

if (node→key == input-key) {

// access other fields of node

}

node = node→next;

}

Restructuring Data Layout (II)
• Idea: separate frequently-

used fields of a data
structure and pack them
into a separate data
structure

• Who should do this?
– Programmer

– Compiler
• Profiling vs. dynamic

– Hardware?

– Who can determine what
is frequently used?

27

struct Node {

struct Node* next;

int key;

struct Node-data* node-data;

}

struct Node-data {

char [256] name;

char [256] school;

}

while (node) {

if (node→key == input-key) {

// access node→node-data

}

node = node→next;

}

Improving Basic Cache Performance
• Reducing miss rate

– More associativity
– Alternatives/enhancements to associativity

• Victim caches, hashing, pseudo-associativity, skewed associativity

– Better replacement/insertion policies
– Software approaches

• Reducing miss latency/cost
– Multi-level caches
– Critical word first
– Subblocking/sectoring
– Better replacement/insertion policies
– Non-blocking caches (multiple cache misses in parallel)
– Multiple accesses per cycle
– Software approaches

28

Miss Latency/Cost
• What is miss latency or miss cost affected by?

– Where does the miss get serviced from?
• Local vs. remote memory

• What level of cache in the hierarchy?

• Row hit versus row miss in DRAM

• Queueing delays in the memory controller and the
interconnect

• …

– How much does the miss stall the processor?
• Is it overlapped with other latencies?

• Is the data immediately needed?

• …

29

Memory Level Parallelism (MLP)

❑Memory Level Parallelism (MLP) means generating and
servicing multiple memory accesses in parallel [Glew’98]

❑Several techniques to improve MLP (e.g., out-of-order execution)

❑MLP varies. Some misses are isolated and some parallel

How does this affect cache replacement?

time

A
B

C

isolated miss parallel miss

Traditional Cache Replacement Policies

❑Traditional cache replacement policies try to reduce miss
count

❑ Implicit assumption: Reducing miss count reduces
memory-related stall time

❑Misses with varying cost/MLP breaks this assumption!

❑Eliminating an isolated miss helps performance more than
eliminating a parallel miss

❑Eliminating a higher-latency miss could help performance
more than eliminating a lower-latency miss

31

Misses to blocks P1, P2, P3, P4 can be parallel
Misses to blocks S1, S2, and S3 are isolated

Two replacement algorithms:
1. Minimizes miss count (Belady’s OPT)
2. Reduces isolated miss (MLP-Aware)

For a fully associative cache containing 4 blocks

S1P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

An Example

Fewest Misses = Best Performance

P3 P2 P1 P4

H H H H M H H H MHit/Miss

Misses=4
Stalls=4

S1P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

Time stall

Belady’s OPT replacement

M M

MLP-Aware replacement

Hit/Miss

P3 P2 S1 P4 P3 P2 P1 P4 P3 P2 S2P4 P3 P2 S3P4 S1 S2 S3P1 P3 P2 S3P4 S1 S2 S3P4

H H H

S1 S2 S3P4

H M M M H M M M

Time stall Misses=6
Stalls=2

Saved
cycles

Cache

MLP-Aware Cache Replacement
• How do we incorporate MLP into replacement

decisions?

• Qureshi et al., “A Case for MLP-Aware Cache
Replacement,” ISCA 2006.

34

CSC 2224: Parallel Computer
Architecture and Programming
Main Memory Fundamentals

Prof. Gennady Pekhimenko

University of Toronto

Fall 2021

The content of this lecture is adapted from the slides of
Vivek Seshadri, Donghyuk Lee, Yoongu Kim,
and lectures of Onur Mutlu @ ETH and CMU

Review #4

• RowClone: Fast and Energy-Efficient

In-DRAM Bulk Data Copy and
Initialization

Vivek Seshadri et al., MICRO 2013

36

Why Is Memory So Important?

(Especially Today)

The Performance Perspective
• “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996)

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.

The Energy Perspective

39

Dally, HiPEAC 2015

The Energy Perspective

40

Dally, HiPEAC 2015

A memory access consumes ~1000X
the energy of a complex addition

The Reliability Perspective
• Data from all of Facebook’s servers worldwide
• Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN’15.

41

The Security Perspective

42

Why Is DRAM So Slow?

Motivation (by Vivek Seshadri)

Conversation with a friend from Stanford

Why is DRAM so slow?!

Really?

50 nanoseconds to serve
one request? Is that a
fundamental limit to
DRAM’s access latency?

Him Vivek

44

Understanding DRAM

What is in here?

45

DRAM

Problems related to today’s
DRAM design

Solutions proposed by our research

Outline

1. What is DRAM?

2. DRAM Internal Organization

3. Problems and Solutions
– Latency (Tiered-Latency DRAM, HPCA 2013,

Adaptive-Latency DRAM, HPCA 2015)

– Parallelism (Subarray-level Parallelism, ISCA 2012)

46

What is DRAM?

DRAM – Dynamic Random Access Memory

3455434

Array of Values

43543

98734

0

847

42

873909

1729

WRITE address, value

READ address

Accessing any location takes
the same amount of time

Data needs to be constantly
refreshed

47

DRAM in Today’s Systems

48

Why DRAM? Why not some other memory?

Von Neumann Model

Processor Memory

Program Data

T1 = Read Data[1]

T2 = Read Data[2]

T3 = T1 + T2

Write Data[3], T3

3

4

8

2

T1 = Read Data[1]

4
4 instruction accesses +
3 data accesses

Memory performance is important
49

Factors that Affect Choice of Memory

1. Speed

– Should be reasonably fast compared to processor

2. Capacity

– Should be large enough to fit programs and data

3. Cost

– Should be cheap

50

Why DRAM?

Access Latency

C
o

st
Flip-flops

SRAM

DRAM

Flash
Disk

Higher
Cost

Higher access
latency

Favorable point in the
trade-off spectrum

51

Is DRAM Fast Enough?

Processor Commodity DRAM

Request

3 GHz, 2 Instructions / cycle

300 Instructions

300 Instructions

300 Instructions

300 Instructions

Independent programs

Request

Request

Request

Served in parallel?

Core Core

Core Core

52

Latency

Parallelism

50ns

Outline

1. What is DRAM?

2. DRAM Internal Organization

3. Problems and Solutions
– Latency (Tiered-Latency DRAM, HPCA 2013,

Adaptive-Latency DRAM, HPCA 2015)

– Parallelism (Subarray-level Parallelism, ISCA 2012)

53

processor

main
memory

peripheral logic

bank

mat

high
latency

DRAM Organization

DRAM Cell Array: Mat

peripheral logic

cell

mat
mat

sense amplifier
w

o
rd

lin
e

d
river

cell

wordline

bitline

Memory Element (Cell)

0 1

Component that can be in at least two states

Can be electrical, magnetic, mechanical, etc.

DRAM → Capacitor
56

Capacitor – Bucket of Electric Charge

Charge

“Charged” “Discharged”

0 0

Vmax

0Voltage level
indicator. Not part
of the actual circuit

57

DRAM Chip

Contains billions of
capacitors (also called cells)

0

?

58

DRAM Chip

Divide and Conquer

DRAM Bank

?

59

1. Weak

2. Reading destroys state

Challenges

Sense-Amplifier

Vmax

0

Vx

Vy

Vx > Vy

Vx

Vy

Vx+δ

Vx+δ

Vy-δ

Amplify the
difference Stable state

60

Outline

1. What is DRAM?

2. DRAM Internal Organization

– DRAM Cell

– DRAM Array

– DRAM Bank

3. Problems and Solutions
– Latency (Tiered-Latency DRAM, HPCA 2013)

– Parallelism (Subarray-level Parallelism, ISCA 2012)
61

DRAM Cell Read Operation

Vmax/2

Vmax/2

0

Vmax/2 + δ

0

VmaxVmaxVmax/2 + δ

DRAM
Cell

Sense-Amplifier

Cell loses
charge

Amplify the
differenceRestore

Cell Data

62

Access data

1
2

DRAM Cell Read Operation

0

DRAM
Cell

Sense-Amplifier

Control Signal

DRAM
Cell

Address

63

Outline

1. What is DRAM?

2. DRAM Internal Organization
– DRAM Cell

– DRAM Array

– DRAM Bank

3. Problems and Solutions
– Latency (Tiered-Latency DRAM, HPCA 2013;

Adaptive-Latency DRAM, HPCA 2015)

– Parallelism (Subarray-level Parallelism, ISCA 2012)
64

Problem

Sense-Amplifier

Control Signal

DRAM
Cell

Address

Much larger than a cell

65

Cost Amortization
Bitline

Wordline

66

DRAM Array Operation

1 0 0 1 1 0 1 0 0 1 0 1

½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½

R
o

w
 D

e
co

d
er

1

R
o

w
 A

d
d

re
ss

? ? ? ? ? ? ? ? ? ? ??

↑

½
↑

½
↑

½
↑

½
↑

½
↑

½
½
↓

½
↓

½
↓

½
↓

½
↓

½
↓

m

1 0 0 1 1 0 1 0 0 1 0 1

Sensing &
Amplification

Charge
Restoration
Wordline
DisableCharge SharingWordline Enable

Access Data (column n)

Restore
Sense-Amplifier

67

m

n

Sense-Amplifiers

Outline

1. What is DRAM?

2. DRAM Internal Organization
– DRAM Cell

– DRAM Array

– DRAM Bank

3. Problems and Solutions
– Latency (Tiered-Latency DRAM, HPCA 2013

Adaptive-Latency DRAM, HPCA 2015)

– Parallelism (Subarray-level Parallelism, ISCA 2012)
68

DRAM Bank

69

How to build a DRAM bank
from a DRAM array?

DRAM Bank: Single DRAM Array?

70

1
0

0
0

0
+

ro
w

s

R
o

w
 D

ec
o

d
er

1 0 0 1 1 0 0 1

Long bitline
Difficult to sense data

in far away cells

R
o

w
 A

d
d

re
ss

DRAM Bank: Collection of Arrays

71

R
o

w
 D

ec
o

d
er

1 0 0 1 1 0 0 1

R
o

w
 D

ec
o

d
er

Row Address Column Read/Write

Data

Subarray

DRAM Operation: Summary

72

R
o

w
 D

ec
o

d
er

1 0 0 1 1 0 0 1

R
o

w
 D

ec
o

d
er

Row Address Column Read/Write

Row m, Col n

m

1. Enable row m

2. Access col n

3. Close row

n

m

DRAM Chip Hierarchy

73

R
o

w
 D

ec
o

d
er

1 0 0 1 1 0 0 1

R
o

w
 D

ec
o

d
er

Row Address Column Read/Write

Collection of Banks

Collection of Subarrays

Outline

1. What is DRAM?

2. DRAM Internal Organization

3. Problems and Solutions
– Latency (Tiered-Latency DRAM, HPCA 2013;

Adaptive-Latency DRAM, HPCA 2015)

– Parallelism (Subarray-level Parallelism, ISCA 2012)

74

Review #4

• RowClone: Fast and Energy-Efficient

In-DRAM Bulk Data Copy and
Initialization

Vivek Seshadri et al., MICRO 2013

75

CSC 2224: Parallel Computer
Architecture and Programming
Main Memory Fundamentals

Prof. Gennady Pekhimenko

University of Toronto

Fall 2021

The content of this lecture is adapted from the slides of
Vivek Seshadri, Donghyuk Lee, Yoongu Kim,
and lectures of Onur Mutlu @ ETH and CMU

